

Addition of Small Electrophiles to N-Heterocyclic-Carbene-Stabilized Disilicon(0): A Revisit of the Isolobal Concept in Low-Valent Silicon Chemistry

Marius I. Arz, Martin Straßmann, Daniel Geiß, Gregor Schnakenburg, and Alexander C. Filippou*

Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany

Supporting Information

ABSTRACT: Protonation and alkylation of (Idipp)Si=Si-(Idipp) (1) afforded the mixed-valent disilicon(I)-borates $[(Idipp)(R)Si^{II}=Si^{0}(Idipp)][B(Ar^{F})_{4}]$ ($1R[B(Ar^{F})_{4}]$; R = H, Me, Et; $Ar^{F} = C_{6}H_{3}$ -3,5-(CF_{3})₂; Idipp = $C[N(C_{6}H_{3}$ -2,6- iPr_{2})CH]₂) as red to orange colored, highly air-sensitive solids, which were characterized by single-crystal X-ray diffraction, IR spectroscopy and multinuclear NMR spectroscopy. Dynamic NMR studies in solution revealed a degenerate isomerization (topomerization) of the " σ -bonded" tautomers of $1H[B-(Ar^{F})_{4}]$, which proceeds according to quantum chemical calculations via a NHC-stabilized (NHC = N-heterocyclic carbene) disilahydronium ion (" π -bonded" isomer) and is reminiscent of the degenerate rearrangement of carbenium

ions formed upon protonation of olefins. The topomerization of $\mathbf{1H}[B(Ar^F)_4]$ provides the first example of a reversible 1,2-H migration along a Si=Si bond observed in a molecular system. In contrast, $\mathbf{1Me}[B(Ar^F)_4]$ adopts a "rigid" structure in solution due to the higher energy required for the interconversion of the " σ -bonded" isomer into a putative NHC-stabilized disilamethonium ion. Addition of alkali metal borates to 1 afforded the alkali metal disilicon(0) borates $\mathbf{1M}[BAr_4]$ (M = Li, Ar = C_6F_5 ; M = Na, Ar = Ar^F) as brown, air-sensitive solids. Single-crystal X-ray diffraction analyses and NMR spectroscopic studies of $\mathbf{1M}[BAr_4]$ suggest in concert with quantum chemical calculations that encapsulation of the alkali metal cations in the cavity of 1 predominantly occurs via electrostatic cation– π interactions with the Si=Si π -bond and the peripheral NHC aryl rings. Displacement of the [Si(NHC)] fragments by the isolobal fragments [PR] and [SiR]⁻ interrelates the cations [(NHC)(R)Si=Si(NHC)]⁺ to a series of familiar, multiply bonded Si and P compounds as verified by analyses of their electronic structures.

1. INTRODUCTION

Stabilization of highly reactive low-valent main-group element species by utilizing N-heterocyclic carbenes (NHCs) as particularly strong σ -donors led in recent years to a plethora of novel compounds with intriguing synthetic potential and to a flourishing, rapidly developing field in chemistry.¹ Appealing examples in low-valent silicon chemistry include the Si⁰ compounds (Idipp)Si=Si(Idipp) (1, Idipp = C[N(dipp)CH]₂, dipp = C₆H₃-2,6-iPr₂)² and Si(bNHC) (bNHC = bidentate N-heterocyclic carbene),³ the Si¹ halides Si₂X₂(Idipp)₂ (X = Cl,² Br,⁴ I⁴), the NHC-adducts of the Si^{II} halides SiX₂ (X = Cl-I),⁵ Si(X)R (X = Cl, H; R = aryl, amino),⁶ and of the disilenylsilylene SiR(SiR=SiR₂),⁷ or the NHC-stabilized cations [Si₂]^{+,8} [SiR]⁺ and Si^{2+,3}d,^{6e,9} The same strategy also enabled the trapping of silagermenylidenes (R₂Si=Ge),¹⁰ phosphasilenylidenes (RP=Si)¹¹ and disilavinylidenes (R₂Si=Si).¹²

Analysis of the bonding between main-group elements and NHCs raised a controversial debate in the literature.¹³ G. Frenking et al. viewed 1 as a Si₂ molecule that is trapped in its excited (${}^{1}\Delta_{g}$) electronic state by two NHCs, and calculated the donor-acceptor Si-C_{NHC} interactions in 1 using the EDA-

NOCV method.¹⁴ Although this donor–acceptor model provides a simplified interpretation of the bonding in 1, which has been also used to rationalize the bonding in other NHC-stabilized diatomic molecules,^{14,15} it is not adequate to forecast the reactivity of 1 given the considerably higher energy of the (${}^{1}\Delta_{g}$) electronic state of Si₂ than that of its triplet ground-state configuration (X³ Σ_{g}^{-})¹⁶ and the rather large Si– $C_{\rm NHC}$ bond dissociation energies,¹⁷ which prevented so far the use of 1 as a source of Si₂ in reactions.

An alternative view of **1** was recently presented in an experimental and theoretical study by our group, which uncovered the similarity of the electronic structure of **1** with that of the diphosphene (*E*)-Mes*P=PMes* (Mes* = C₆H₂-2,4,6-tBu₃) and the NHC-stabilized phosphasilenylidene (Idipp)Si=PMes*, with all three compounds showing a similar sequence of the frontier orbitals with almost isoenergetic $n_+(E-E)$ lone pair (E = Si or P)¹⁸ and $\pi(E=E)$ orbitals as the HOMO and the HOMO-1, respectively.¹¹ This relationship, which can be traced back to the isolobal analogy¹⁹ of the

Received:January 28, 2016Published:March 15, 2016

fragments [Si(NHC)], [PR] and [SiR][–], allowed also to rationalize the experimentally determined structure of the 1e-oxidation product of 1 ([Si₂(Idipp)₂]⁺), and to interrelate its electronic structure with that of the disilyne radical anions [Si₂R₂][–].^{8,20}

Additional support for this view can be found by comparing the reactivity of the isolobal compounds. Remarkably, diphosphenes have been shown to adopt either η^1 , η^2 or $\mu(\eta^1;\eta^1)$ coordination modes in complexes with coinagemetals,²¹ and similar coinage metal complexes of the disilicon(0) compound 1 of the general formulas [MCl(η^1 -1)], [M(η^2 -1)][B(C₆F₅)₄] and [M₂Cl₂- μ -(1 κ Si¹:2 κ Si²-1)] (M = coinage metal atom) have been reported recently by G. Robinson et al. and our group.²²

In comparison, reactivity studies of diphosphenes toward simple electrophiles such as H^+ or R^+ are very limited. Methylation of (*E*)-Mes*P=PMes* has been reported to give the isolable phosphanylphosphenium cation [Mes*(Me)P=PMes*]⁺,^{23a} whereas attempts to detect the corresponding protonation product [Mes*(H)P=PMes*]⁺ failed.^{21b,23b}

This prompted us to study the hitherto unexplored reactivity of 1 toward the electrophiles H^+ and R^+ and alkali metal cations. Herein, we report on the protonation and electrophilic alkylation of 1 leading to the disilicon(I) compounds [(Idipp)(R)Si=Si(Idipp)]A (R = H, Me, Et; A = borate anion) as well as the reactions of 1 with alkali metal borates, yielding the alkali metal disilicon(0) borates $[Si_2(M)(Idipp)_2]A$ (M = Li, Na). All products were thoroughly studied by a combination of experimental and theoretical methods. In addition, we report on a detailed quantum chemical study, which corroborates the isolobal analogy of the cations $[(Idipp)(R)Si=Si(Idipp)]^+$ to a series of familiar, multiply bonded Si and P compounds.

2. RESULTS AND DISCUSSION

2.1. Protonation of (Idipp)Si=Si(Idipp). The hydridodisilicon(I)-borate $[(Idipp)(H)Si=Si(Idipp)][B-(Ar^F)_4]$ (1H[B(Ar^F)_4]) was obtained selectively upon protonation of 1 with Brookhart's acid ($[H(Et_2O)_2][B(Ar^F)_4]$, Ar^F = C_6H_3 -3,5-(CF₃)₂)²⁴ in fluorobenzene and isolated after crystallization from a fluorobenzene/*n*-hexane mixture at -30 °C as a dark red, highly air-sensitive solid in 80% yield (Scheme 1) (see Supporting Information (SI), chapter 2.1). Compound

 $\mathbf{1H}[\mathbf{B}(\mathbf{Ar}^{F})_{4}]$ is a thermally robust solid, which decomposes upon melting in a vacuum-sealed glass capillary at 221 °C. Slow decomposition of $\mathbf{1H}[\mathbf{B}(\mathbf{Ar}^{F})_{4}]$ to $[\mathrm{IdippH}][\mathbf{B}(\mathbf{Ar}^{F})_{4}]$ and other unidentified products was however observed by ¹H NMR spectroscopy in THF- d_{8} solution at room temperature within 24 h.

The solid-state structure of $\mathbf{1H}[B(Ar^F)_4]$ was determined by single-crystal X-ray diffraction, and confirmed that the cations $\mathbf{1H}^+$ (Figure 1) are well separated from the borate anions. The

closest Si…F contacts of 4.99(1) Å are significantly longer than the sum of the van der Waals radii of silicon and fluorine (3.6 Å).²⁵ The H85 atom was localized in the difference Fourier map and isotropically refined. It is σ -bonded to the Si1 atom, which is trigonal planar bonded according to the sum of bond angles of 360(1)°. The torsion angles C1–Si1–Si2–C28 and H85–Si1–Si2–C28 of 177.61(8)° and -6(1)° indicate a planar C_{NHC}–Si(H)–Si–C_{NHC} core with a *trans*-arrangement of the NHC substituents. The Si1-bonded central ring of the NHC substituent adopts a coplanar conformation ($\varphi_{\text{NHC1}} =$ 8.60(6)°) with respect to the C_{NHC}–Si–Si–C_{NHC} plane, whereas the Si2-bonded NHC-substituent is perpendicularly oriented ($\varphi_{\text{NHC2}} =$ 71.06(6)°) (Figure 1, right).²⁶

The Si=Si bond (2.1873(8) Å) of 1H^+ compares well with those of the isolobal compounds (Z)-Tbb(Br)Si=Si(SIdipp) $(2.167(2) \text{ Å}, \text{ Tbb} = C_6H_2-2,6-[CH(SiMe_3)_2]_2-4-tBu, \text{ SIdipp} =$ $C[N(dipp)CH_2]_2)_1^{12}$ (IMe₄)(R^{Si})Si=Si R^{Si} (2.1989(6) Å, IMe₄ = $C[N(Me)CMe]_2$, $R^{Si} = SiiPr[CH(SiMe_3)_2]_2$,²⁷ [Li(dme)_3]- $[R^{Si}(H)Si=SiR^{Si}]$ (2.2034(9) Å, dme =1,2-dimethoxyethane)²⁸ and $[(Idipp)(I)Si=Si(Idipp)][B(C_6F_5)_4]$ (2.1739(9) Å),⁴ but is shorter (1.9%) than that of 1 (2.229(1) Å)² and Si₂(SIdipp)₂ (2.2323(8) Å).²⁹ Shortening of the Si=Si bond of 1 upon protonation can be rationalized according to comparative natural bonding orbital (NBO) analyses of 1_{calc} and $1H^+_{calc}$ (see SI, Tables S7 and S8) with the increased s-character of the hybrid orbital on the Si1 atom employed in the Si-Si σ -bond. Consistently, 1H⁺ displays a shortened Si1-C1 bond (1.882(2) Å) and a widened C1-Si1-Si2 angle $(116.73(7)^{\circ})$ compared to 1 (Si-C_{NHC}: 1.927(2) Å; $\angle C_{\text{NHC}}$ -Si-Si# = 93.37(5)^{\circ}).² Another salient feature of the structure of 1H⁺ is the narrow C28-Si2-Si1 angle of $95.34(6)^{\circ}$, which suggests the presence of a lone pair of high s-character at the Si2 atom, in full agreement with the results of the NBO analysis of $1H^+_{calc}$ (see SI, Table S8).

The ATR FTIR spectrum of a solid state sample of $1H[B(Ar^{F})_{4}]$ displays a weak absorption band at 2142 cm⁻¹, which is assigned to the ν (Si–H) stretching vibration (see SI, Figure S1). This band does not appear in the IR spectrum of the deuterated derivative $[(Idipp)(D)Si=Si(Idipp)][B(Ar^F)_4]$ $(1D[B(Ar^{F})_{4}])$, which was analogously obtained from 1 and $[D(Et_2O)_2][B(Ar^F)_4]$ (see SI, chapter 2.2). However, the ν (Si–D) absorption band of $1D[B(Ar^F)_4]$, which is expected to appear at 1541 cm⁻¹, was not detected due to its weak intensity and superimposition with other absorption bands in this region. The $\nu(Si-H)$ absorption band of $1H[B(Ar^F)_A]$ emerges at a similar wavenumber as the ν (Si–H) absorptions of the 1,2dihydridodisilenes (E)-Si₂H₂R₂ (ν (Si-H) = 2160 cm⁻¹, R = Bbp = C_6H_3 -2,6-[CH(SiMe_3)_2]_2; ν (Si-H) = 2151 cm⁻¹, R = Bbt = C_6H_2 -2,6- $[CH(SiMe_3)_2]_2$ -4- $C(SiMe_3)_3$, both in KBr),³⁰ but appears at lower wavenumbers than those of hydridosilanes (e.g., $RSiH_nCl_{3-n}$ (n = 1-3): $\nu(Si-H) = 2171-2240$ cm⁻¹; R = $C_6H_3-2,6-(C_6H_2-2,4,6-iPr_3)_2)$.³¹

Notably, $\mathbf{1H}[\mathbf{B}(\mathbf{Ar}^{\mathrm{F}})_4]$ is fluxional on the NMR time scale. The dynamic process was studied by variable temperature ¹H, ¹³C{¹H} and ²⁹Si NMR spectroscopy in THF- d_8 and involves a degenerate isomerization (topomerization)³² between the " σ bonded" tautomers of $\mathbf{1H}^+$, which leads to an exchange of the two heterotopic silicon sites in solution (Scheme 2). Thus, two well separated ²⁹Si doublet signals at $\delta = 69.4$ and 125.4 ppm are observed in the slow exchange limit ²⁹Si NMR spectrum of $\mathbf{1H}[\mathbf{B}(\mathbf{Ar}^{\mathrm{F}})_4]$ in THF- d_8 at 213 K for the three-coordinated (Si1) and two-coordinated (Si2) silicon atom, respectively (Figure 2, left). In comparison, no ²⁹Si NMR signal was

Figure 1. Left: DIAMOND plot of the molecular structure of the cation $1H^+$ in the crystal lattice of $1H[B(Ar^F)_4]$ at 123(2) K. Thermal ellipsoids are set at 30% probability. Hydrogen atoms, except the Si1-bonded H85 atom, were omitted for clarity. Selected bond lengths [Å], bond angles [deg] and torsion angles [deg]: Si1-C1 1.882(2), Si1-Si2 2.1873(8), Si2-C28 1.940(2), Si1-H85 1.32(2); C1-Si1-Si2 116.73(7), C1-Si1-H1 106(1), Si2-Si1-H85 138(1), C28-Si2-Si1 95.34(6); C1-Si1-Si2-C28 177.61(8), H85-Si1-Si2-C28 -6(1). Right: Different view of $1H^+$ illustrating the different orientation of the Si-bonded NHC rings; hydrogen atoms (except the H85 atom) and the N-bonded dipp substituents were omitted for clarity.

Scheme 2. To pomerization of $1H[B(Ar^F)_4]$ in THF- d_8 Solution^{*a*}

"The tentative intermediate, a NHC-stabilized disilahydronium ion, is depicted in curly brackets. The $[B(Ar^F)_4]^-$ counteranion and formal charges were omitted for simplicity.

detected in the ²⁹Si NMR spectrum of $1H[B(Ar^F)_4]$ in THF- d_8 at 333 K, even after long accumulation time, due to rapid site exchange.

Both ²⁹Si NMR signals of $1H[B(Ar^F)_4]$ appear in the slow exchange limit spectrum at similar frequencies as those of the structurally related cations $1Me^+$ and $1Et^+$ (see Table 1 and chapter 2.2), but at a considerably higher field than that of 1 (δ = 224.5 ppm in C₆D₆).² The ¹J(²⁹Si,¹H) (204.2 Hz) and ²J(²⁹Si,¹H) (14.8 Hz) coupling constants compare well with those of the 1,2-dihydridodisilenes (*E*)-Si₂H₂R₂ (R = Bbp, Bbt; ¹J(²⁹Si,¹H) = 216 and 210 Hz, respectively; ²J(²⁹Si,¹H) = 16 Hz in both compounds),³⁰ indicating an increased s-character of the Si hybrid orbital involved in the Si–H bond in full agreement with the NBO analysis results of 1H⁺ (see SI, Table S8).

Additional evidence for the dynamic process was provided by the slow exchange limit ¹H and ¹³C{¹H} spectra of $1H[B-(Ar^F)_4]$ (THF- d_8 , 213 K), which display a double set of signals

Figure 2. Left: ²⁹Si NMR spectrum of $1H[B(Ar^F)_4]$ at 213 K displaying two doublets with characteristic ¹ $J(^{29}Si_1^{1}H)$ and ² $J(^{29}Si_1^{1}H)$ coupling constants. Right: Excerpt of the ¹H NMR spectrum of $1H[B(Ar^F)_4]$ at 25 °C displaying the Si-*H* resonance at $\delta = 5.62$ ppm with a mean $J(^{29}Si_1^{1}H)$ coupling constant due to the positional exchange of the Si sites; the signal marked with an asterisk originates from a small amount of an unknown impurity.

Table 1. Comparison of Selected NMR Data of the Cations $1R^+$ in $1R[BAr_4]$ (R = H, Me, Et, Na: Ar = Ar^F ; R = I, Li: Ar = C_6F_5) and 1

	$\delta(^{29}\text{Si})$	[ppm]	$\delta(C_{ m NHC})$ [ppm]		
	Si1	Si2	C _{NHC} -Si1-R	C _{NHC} –Si2	
$1H^+$	69.4 [°]	125.4 ^c	161.8 ^c	174.5 [°]	
1Me ⁺	102.8 ^d	115.2 ^d	162.9 ^d	177.1 ^d	
	103.0 ^e	117.1 ^e			
$1Et^+$	111.6 ^d	87.2 ^d	164.2 ^d	176.1 ^d	
1I ^{+a}	-26.4^{f}	75.3 ^f	153.6 ^f	172.2 ^f	
1Li ⁺	301.1 ^g	301.1 ^g	188.8 ^g	188.8 ^g	
$1 Na^+$	288.8 ^g	288.8 ^g	189.1 ^g	189.1 ^g	
1 ^b	224.5 ^h	224.5 ^h	196.3 ^h	196.3 ^h	
aData talea	a furgers use 1	b _{Data} taka	n fram wat 2	CTUE A 212 V	

"Data taken from ref 4. "Data taken from ref 2. "THF- d_8 , 213 K. ^dTHF- d_8 , 298 K. "C₆H₅F, 298 K. ^fTHF- d_8 , 203 K. ^gC₆D₅Cl, 298 K. ^hC₆D₆, 298 K.

for the heterotopic Idipp substituents, whereas the fast exchange limit 1H and $^{13}C\{^1H\}$ spectra of $1H[B(Ar^F)_4]$ (THF- d_{8} , 333 K) reveal only one set of signals (see SI, Figures S2-S7). The number and relative intensities of the Idipp signals in the slow exchange ¹H and ¹³C{¹H} NMR spectra clearly indicate that both NHC groups rotate fast about the Si-C_{NHC} bonds on the NMR time scale. Most distinctive are the signals of the C_{NHC} nuclei in the ¹³C{¹H} NMR spectra (Table 1). The signal of the Si1-bonded C_{NHC} atom appears at lower frequency (δ = 161.8 ppm) than that of the Si2-bonded C_{NHC} atom (δ = 174.5 ppm), and both C_{NHC} atoms have a chemical shift in between that of Idipp ($\delta = 220.6$ ppm in $C_6 D_6$)³³ or 1 $(\delta = 196.3 \text{ in } C_6 D_6)^2$ and the imidazolium salt (IdippH)Cl ($\delta =$ 139.3 ppm in DMSO- d_6).^{5b} The same trend is observed for $1Me[B(Ar^{F})_{4}]$ and $1Et[B(Ar^{F})_{4}]$ and suggests a higher "imidazolium character" of the Si1-bonded NHC ring than that of the Si2-bonded NHC in $\mathbf{1R}[B(Ar^{F})_{4}]$ (R = H, Me, Et) (Table 1).

Topomerization of $\mathbf{1H}[B(Ar^F)_4]$ involves an intramolecular 1,2-H migration and proceeds according to quantum chemical calculations (chapter 2.3) via an NHC-stabilized disilahydronium intermediate (Scheme 2). Evidence for the intramolecularity of the process was provided by the ²⁹Si satellite signals of the Si-H resonance in the ¹H NMR spectrum of $1H[B(Ar^{F})_{4}]$ in THF-d₈ at 298 K (δ = 5.62 ppm), which displays an averaged $J(^{29}Si,^{1}H)$ coupling constant of 94.8 Hz (Figure 2, right).³⁴ A similar topomerization process has been proposed by G. Robinson et al. for the copper complex $[CuCl(\eta^{1}-1)]$, however without unambiguous experimental verification.^{22a} Furthermore, recent studies in our group have shown that the cation [(Idipp)(I)Si=Si(Idipp)]⁺ and the coinage metal complexes $[MCl(\eta^1-1)]$ and $[M(\eta^1-1)(PMe_3)]$ - $[B(Ar^{F})_{4}]$ (M = Cu, Ag, Au) undergo the same intramolecular topomerization process in solution as observed for 1H[B- $(Ar^{F})_{4}$].^{4,22b-}

The thermodynamic parameters of the topomerization were obtained by full line-shape analysis of the NHC backbone C^{4,5}-H ring proton signals in the temperature range of 213–273 K and were found to be ΔH^{\neq} = 38.5(±2.4) kJ mol⁻¹ and ΔS^{\neq} = -54.3(±7.7) J K⁻¹ mol⁻¹ (see SI, chapter 3). Remarkably, the Gibbs energy of activation ΔG^{\neq} (51.6(±0.6) kJ mol⁻¹ at T_c = 241 K, T_c = coalescence temperature) compares well with that calculated for the isomerization of the *trans*-bent disilene Si₂H₄ into the monohydrogen-bridged minimum structure (59 kJ mol⁻¹),³⁵ and the entropy of activation of the topomerization of $1H[B(Ar^F)_4]$ is similar to that found for the intramolecular 1,2-hydrogen migration of the 1,2-dihydridodisilene (*E*)-Si₂H₂Bbt₂ (-63(8) J K⁻¹ mol⁻¹), which leads via a silylsilylene intermediate to a silane.³⁰

The topomerization of $\mathbf{1H}[\mathbf{B}(\mathbf{Ar}^{\mathrm{F}})_4]$ is the first example of a reversible 1,2-hydrogen migration observed along a Si=Si bond in a molecular system and provides a molecular model for the migration of hydrogen atoms on Si(001) surfaces via "dangling bonds" (i.e., coordinatively unsaturated silicon centers),³⁶ which is suggested to account for the decrease in efficiency of photovoltaic cells based on hydrogenated amorphous silicon (Staebler–Wronski effect).³⁷ Topomerization of $\mathbf{1H}[\mathbf{B}(\mathbf{Ar}^{\mathrm{F}})_4]$ is reminiscent of that of diazenium ions in acidic solutions, which has been suggested to proceed either via an intra- or intermolecular H⁺ transfer,³⁸ and of the degenerate rearrangement of carbenium ions formed upon protonation of olefins.³⁹

2.2. Alkylation of (ldipp)Si=Si(ldipp). Electrophilic alkylation of 1 was achieved upon treatment of 1 with the corresponding iodoalkane in the presence of $Na[B(Ar^F)_4]$ to afford the mixed-valent alkyldisilicon(I) borates [(Idipp)(R)-Si^{II}=Si⁰(Idipp)][B(Ar^F)_4] (1R[B(Ar^F)_4], R = Me, Et) (Scheme 3). Remarkably, addition of $Na[B(Ar^F)_4]$ to a solution

Scheme 3. Electrophilic Alkylation of 1 to Give the Compounds $1R[B(Ar^{F})_{4}]$ (R = Me, Et)^{*a*}

^aFormal charges are encircled.

of 1 in fluorobenzene led to a color change from dark red to brown to afford selectively the alkalimetal disilicon(0) borate $[Si_2(Na)(Idipp)_2][B(Ar^F)_4]$ (1Na $[B(Ar^F)_4]$) as discussed in chapter 2.4 (vide infra). Subsequent addition of the iodoalkane to the solution of $1Na[B(Ar^F)_4]$ in fluorobenzene was accompanied by a color change from brown to bright orange and precipitation of NaI leading selectively to the alkyldisilicon-(I) borate salts $\mathbf{1R}[B(Ar^{F})_{4}]$ (Scheme 3). Remarkably, preactivation of 1 via complexation of $Na[B(Ar^{F})_{4}]$ is not indispensable for the formation of the alkyldisilicon(I) cations $1R^+$, as evidenced by the reaction of 1 with iodomethane in C_6H_5F , which affords the analogous iodide salt [(Idipp) (Me)Si=Si(Idipp)]I according to ²⁹Si NMR spectroscopy. The salts $\mathbf{1R}[B(Ar^{F})_{4}]$ were isolated after crystallization from fluorobenzene/n-hexane mixtures at -30 °C as highly airsensitive, orange solids in moderate yields (R = Me: 36%, R =Et: 50%) (see SI, chapters 2.3 and 2.4). Notably, 1 did not react with 2-iodopropane indicating that bulky electrophiles cannot access the sterically protected Si₂ core of 1. The compounds $\mathbf{1R}[B(Ar^{F})_{4}]$ are thermally robust and decompose upon melting in vacuum-sealed glass capillaries at elevated temperatures (R = Me: 213 °C, R = Et: 209 °C). As in the case of $1H[B(Ar^{F})_{4}]$, the salts $1R[B(Ar^{F})_{4}]$ decompose slowly in THF d_8 solution at ambient temperature, the decomposition leading to $[IdippH][B(Ar^F)_4]$ and other unidentified products.

Single-crystal X-ray diffraction analyses of $1Me[B(Ar^F)_4]$ and $1Et[B(Ar^F)_4]$ revealed that these compounds are isotypic with $1H[B(Ar^F)_4]$. The cations $1R^+$ are well separated from the

borate anions as evidenced by the shortest Si…F distances of 5.416(5) Å (**1Me**⁺) and 5.030(9) Å (**1Et**⁺) (cf. $\Sigma r(\text{Si} \dots \text{F})_{\text{vdW}} = 3.6 \text{ Å}),^{25}$ and reveal similar structural features as **1H**⁺, i.e., a *trans*-bent planar C_{NHC}-Si-C_{NHC} core, in which a trigonalplanar coordinated Si1 atom (sum of angles at Si1: 359.6(1)° (**1Me**⁺), 359.9(2)° (**1Et**⁺)) is connected via a Si=Si bond to a V-shaped coordinated Si2 atom with a narrow angle at the Si2 atom (C28-Si2-Si1: 95.13(6)° (**1Me**⁺), 100.08(7)° (**1Et**⁺)) (Figure 3, Figure S34 (SI), Table 2). The Si-R (Si1-C56)

Figure 3. DIAMOND plot of the molecular structure of the cation $1Me^+$ in the crystal lattice of $1Me[B(Ar^F)_4]$ at 123(2) K. Thermal ellipsoids are set at 30% probability. Hydrogen atoms were omitted for clarity. Selected bond lengths [Å], bond angles [deg] and torsion angles [deg]: Si1–C1 1.901(2), Si1–Si2 2.1909(8), Si2–C28 1.947(2), Si1–C56 1.885(2); C1–Si1–Si2 114.62(7), C1–Si1–C56 111.3(1), Si2–Si1–C56 133.71(8), C28–Si2–Si1 95.13(6); C1–Si1–Si2–C28 –177.4(1), C28–Si2–Si1–C56 10.7(1).

bond lengths (1Me⁺: 1.885(2) Å, 1Et⁺: 1.893(2) Å) are typical of Si–C single bonds and only slightly shorter than the Si1– $C_{\rm NHC}$ bond lengths (1Me⁺: 1.901(2) Å, 1Et⁺: 1.912(2) Å). Whereas the Si2-bonded central ring of the NHC group adopts in all cases an almost orthogonal orientation with respect to the planar $C_{\rm NHC}$ –Si–Si– $C_{\rm NHC}$ core of the cations ($\varphi_{\rm NHC2} =$ 71.06(6)° (1H⁺), 79.11(7)° (1Me⁺), 88.03(7)° (1Et⁺)),²⁰ the increasing bulkiness of the Si1-bonded substituent R in the series 1H⁺ \rightarrow 1Me⁺ \rightarrow 1Et⁺ provokes a conformational change of the Si1-bonded NHC substituent from an almost coplanar orientation in 1H⁺ ($\varphi_{\rm NHC1} =$ 8.60(6)°) and 1Me⁺ ($\varphi_{\rm NHC1} =$ 13.23(8)°) to a synclinal conformation in 1Et⁺ ($\varphi_{\rm NHC1} =$ 52.52(8)°). The increased steric bulk of the R group can also be invoked to rationalize the gradual elongation of the Si1−C1 bonds in the series 1H⁺ (1.882(2) Å) → 1Me⁺ (1.901(2) Å) → 1Et⁺ (1.912(2) Å) and the decrease of the C1−Si1−Si2 angles in the same series (1H⁺ (116.73(7)°) → 1Me⁺ (114.62(7)°) → 1Et⁺ (108.36(7)°)) (Table 2).

In contrast to $1H[B(Ar^F)_4]$, multinuclear NMR spectroscopic studies of $\mathbf{1R}[B(Ar^F)_4]$ (R = Me, Et) in THF- d_8 indicate that no degenerate isomerization (topomerization) of the " σ bonded" isomers occurs in solution up to 333 K.⁴⁰ Thus, the ¹H and ¹³C{¹H} NMR spectra display a double set of signals for the heterotopic Idipp substituents (see SI, Figures S12-S15 and S17-S21), which could be unequivocally assigned by a combination of ¹H-¹³C HMQC, ¹H-¹³C HMBC and ¹H-²⁹Si HMBC correlation spectroscopies using the correlation between the C^{4,5}-H proton signals of the NHCs and the ²⁹Si NMR signals. The number and relative intensity of the signals of each Idipp group indicates that both NHCs rotate fast about the respective Si-C_{NHC} bonds on the NMR time scale. Similarly, the ²⁹Si NMR spectra of $1R[B(Ar^{F})_{4}]$ (R = Me, Et) in THF- d_8 show two separate resonances at 298 K (Table 1), which were unequivocally assigned by two-dimensional ¹H-²⁹Si HMBC spectroscopy. The ²⁹Si NMR spectrum of $1Me[B(Ar^{F})_{4}]$ was also recorded in C₆H₅F and displayed two signals at 103.0 and 117.1 ppm (calibrated against SiMe₄), i.e., at almost the same position as those observed in THF- d_8 (102.8) and 115.2 ppm, respectively) (Table 1). This observation excludes a coordination of THF to the potentially electrophilic Si2-center of the cations [(Idipp)(Me)Si=Si(Idipp)]+ in solution. Moreover, the ²⁹Si NMR chemical shifts of the corresponding iodide salt 1Me[I] in C₆H₅F (103.5 and 112.6 ppm) are quite similar to those of $1Me[B(Ar^F)_4]$ suggesting a negligible interaction of the stronger nucleophile I^- with $1Me^+$.

A comparison of the ²⁹Si NMR chemical shifts of **1**R⁺ reveals, that the three-coordinated Si nuclei (*Si*-R) are progressively deshielded in the series **1H**[B(Ar^F)₄] (δ = 69.4 ppm) \rightarrow **1Me**[B(Ar^F)₄] (δ = 102.8 ppm) \rightarrow **1Et**[B(Ar^F)₄] (δ = 111.6 ppm) (Table 1). Notably, a similar, however less pronounced trend is observed in the series of the alkyl silanes SiMe₃R upon replacement of the R substituent (H (δ = -18.5 ppm) \rightarrow Me (δ = 0.0 ppm) \rightarrow Et (δ = 1.6 ppm)).⁴¹ In comparison, the twocoordinated ²⁹Si NMR nuclei are progressively shielded in the same series **1H**[B(Ar^F)₄] (δ = 125.4 ppm) \rightarrow **1Me**[B(Ar^F)₄] (δ = 115.2 ppm) \rightarrow **1Et**[B(Ar^F)₄] (δ = 87.2 ppm) (Table 1). Remarkably, a similar influence of the substituents R was observed on the ¹³C NMR chemical shifts of the C^{α} and C^{β} atoms in the alkenes R-C^{β}H=C^{α}H₂ (R = H, Me, Et).⁴²

Table 2. Comparison of Selected Bond Lengths [Å], Bond Angles [deg] and Dihedral Angles [deg] of the Cations $1R^+$ in $1R[BAr_4]$ (R = H, Me, Et, Na: Ar = Ar^F; R = I, Li: Ar = C₆F₅) and 1

	Si–Si [Å]	Si1- C_{NHC} [Å]	Si2 $-C_{\rm NHC}$ [Å]	C _{NHC} -Si1-Si2 [deg]	C _{NHC} -Si2-Si1 [deg]	$\varphi_{ m NHC1}{}^{a}$ [deg]	$\varphi_{ m NHC2}{}^a$ [deg]
$1H^+$	2.1873(8)	1.882(2)	1.940(2)	116.73(7)	95.34(6)	8.60(6)	71.06(6)
$1Me^+$	2.1909(8)	1.901(2)	1.947(2)	114.62(7)	95.13(6)	13.23(8)	79.11(7)
$1Et^+$	2.1726(9)	1.912(2)	1.941(2)	108.36(7)	100.08(7)	52.52(8)	88.03(7)
1I ^{+b}	2.1739(9)	1.901(2)	1.931(2)	112.83(7)	96.61(7)	96.69(7)	95.78(7)
$1Li^+$	2.234(1)	1.941(3)	1.938(3)	94.9(1)	98.7(1)	79.0(1)	108.9(1)
$1 Na^+$	2.248(2)	1.948(4)	1.948(4)	95.4(1)	95.4(1)	87.7(1)	87.7(1)
1 ^c	2.229(1)	1.927(2)	1.927(2)	93.37(5)	93.37(5)	87.11(5)	87.11(5)

 ${}^{a}\varphi_{\rm NHC1}$ and $\varphi_{\rm NHC2}$ are the dihedral angles between the least-squares plane of the C_{NHC}-Si-Si-C_{NHC} atoms and the Si1- and Si2-bonded NHCs rings, respectively. ^bData taken from ref 4. ^cData taken from ref 2.

Figure 4. Schematic Gibbs profiles (T = 298 K) for the degenerate isomerizations of $[Si_2(H)(Idipp)_2]^+$ (left) and $[Si_2(Me)(Idipp)_2]^+$ (right), which includes the optimized minimum structures $\mathbf{1H}^+_{calc'}$ $\mathbf{1Me}^+_{calc'}$ ($\mathbf{1H}^+$)'_{calc} and ($\mathbf{1Me}^+$)'_{calc} and the transition state ($\mathbf{1H}^+$) \mathbf{T}^{S}_{calc} with selected bonding parameters. The N-bonded dipp substituents and H atoms, except the Si-bonded H atom, were omitted for clarity, and only one-half of the symmetric energy profiles is depicted.

2.3. Quantum Chemical Studies of 1H⁺ and 1Me⁺. In order to get a closer insight into the topomerization of **1H**⁺, the energy hypersurface of **1H**⁺ was analyzed and compared with that of **1Me**⁺ by quantum chemical calculations at the B97-D3 level of theory, $^{43a-d}$ including the COSMO solvation model^{43e} and RI-JCOSX approximations (see SI, chapter 5). 43f,g The def2-TZVP basis sets were used for the Si, N, heterocyclic C atoms and the Si1-attached H atom and methyl group, and the def2-SVP basis sets for all peripherical carbon and all other hydrogen atoms. 43h,i The level of theory is abbreviated in the following as B97-D3/I.

Geometry optimization of $1H^+$ and $1Me^+$ afforded minimum structures with a Si1–H and Si1–Me σ -bond (" σ -bonded" isomers),⁴⁴ which are designated in the following as $1H^+_{calc}$ and $1Me^+_{calc}$. A comparison of the structural parameters revealed an excellent agreement between the calculated and the experimental bond lengths and angles obtained for $1H[B(Ar^F)_4]$ and $1Me[B(Ar^F)_4]$ by X-ray crystallography. Remarkably, also the quite different conformation of the Si1-bonded NHC compared to the Si2-bonded NHC could be well reproduced by the quantum chemical calculations (see SI, Tables S4 and S5).

A second minimum structure could be localized on the energy hypersurface of 1H⁺ and 1Me⁺, which is however less stable than that of $1H^+_{calc}$ and $1Me^+_{calc}$ by 30.5 kJ mol⁻¹ and 95.4 kJ mol⁻¹ (ΔG values at 298 K), respectively. (1H⁺)'_{calc} features a "symmetric" H-bridged structure, in which the H atom is located over the Si-Si bond at almost the same distance from the two Si atoms (" π -bonded" isomer).⁴⁴ Notably, the Si-Si bond of (1H⁺)'_{calc} (2.301 Å) is longer than the Si=Si bond of $1H^+_{calc}$ (2.198 Å), and its length approaches the Si–Si single bond length in α -Si (2.352 Å).⁴⁵ $(1H^+)'_{calc}$ features a 3c-2e Si-H-Si interaction, which leads to longer Si-H bonds (1.716 and 1.710 Å) than the 2c-2e Si-H bond (1.486 Å) of $1H^+_{calc}$ (" σ -bonded" isomer). The two minimum structures are connected via a transition state $(1H^+)^{TS}_{calc}$ which lies 42.9 kJ mol⁻¹ higher in energy than 1H⁺_{calc} (Figure 4). The calculated barrier agrees acceptably well with the experimentally derived Gibbs energy of activation $(\Delta G^{\neq}(298 \text{ K}) = 54.7 \pm 0.2 \text{ kJ mol}^{-1})$. The conversion of $1 H^+_{calc}$ to $(1 H^+)'_{calc}$ involves a H-migration from the end-on to a bridging position and a concomitant rotation of the Si1bonded heterocyclic ring from an almost coplanar orientation

in $1\text{H}^+_{\text{calc}}(\varphi_{\text{NHC1}} = 3.63^\circ)$ to an almost orthogonal orientation in $(1\text{H}^+)'_{\text{calc}}(\varphi_{\text{NHC1}} = 76.17^\circ)$ (see SI, Table S4).²⁶

In contrast to $(1H^+)'_{calc}$ the second minimum structure $((1Me^+)'_{colc})$ located on the energy hypersurface of $1Me^+$ reveals an asymmetric bridging of the Si-Si single bond (2.336 Å) by the methyl group, as evidenced by the markedly different Si1-C56 (2.029 Å) and Si2-C56 (2.307 Å) bonds (Figure 4). Both Si-C_{Me} bonds are longer than the 2c-2e Si- C_{Me} bond of the " σ -bonded" isomer $1Me^+_{calc}$ (1.891 Å). A relaxed potential energy surface scan was performed starting from $1Me^+_{calc}$ which involved a progressive decrease of the Si2- C_{Me} distance from 377 pm (the Si2- C_{Me} distance in 1Me⁺_{calc}) to 137 pm in 12 steps. This scan afforded a maximum, which displayed one imaginary frequency of -177cm⁻¹ and a Gibbs energy of 97 kJ mol⁻¹. Further optimization of this structure did not furnish the transition state $(1Me^+)^{TS}_{calc}$ but instead led to the minimum structures $1Me^{+}_{calc}$ and $(1Me^{+})'_{calc}$ indicating a flat progression of the potential energy surface during interconversion of $(1Me^+)'_{calc}$ into the overall minimum structure $1Me_{calc}^{+}$ (Figure 4). The significantly higher energy barrier for the transformation of $1Me^{+}_{calc}$ into $(1Me^{+})'_{calc}$ compared to that of $1H^{+}$ confirms the observed rigidity of 1Me⁺ on the NMR time scale.

NBO (natural bond orbital) analyses of the " σ -bonded" isomers $1H^+_{calc}$ and $1Me^+_{calc}$ revealed a localized Si1-R (R = H, Me) σ -bond NBO, a Si-Si σ - and π -bond NBO, which are both polarized toward the Si1 atom, and a lone pair of electrons at Si2 in a natural hybrid orbital (NHO) with high s-character (ca. 77%) (see SI, Tables S8 and S10).^{43j} The rather high Wiberg bond Index (WBI) of the Si=Si bond of 1.61 ($1H^+_{calc}$) and 1.62 ($1Me^+_{calc}$) and the high covalent contribution to the overall NRT (natural resonance theory) Si-Si bond order of 1.85 ($1H^+_{calc}$) and 1.84 ($1Me^+_{calc}$) provide additional support for the presence of a slightly polar, covalent Si=Si bond.

Natural population analyses of $1H^+_{calc}$ and $1Me^+_{calc}$ revealed a considerable electron transfer from 1 to the electrophile (H⁺, Me⁺), leading to a negative partial charge at the H atom (q = -0.14e) and the methyl group (q = -0.38e). The charge flow occurs mainly from the Si atoms, as evidenced by a comparison of the Si partial charges in $1H^+_{calc}$ (q(Si1) = 0.31e, q(Si2) =0.26e) and $1Me^+_{calc}$ (q(Si1) = 0.65e, q(Si2) = 0.20e) with those in 1_{calc} (q(Si1,Si2) = -0.10e) (see SI, Tables S7, S8 and S10).

Figure 5. Schematic presentation of the Si–R–Si interaction in the " π -coordinated" isomers of (1H⁺) (left) and 1Me⁺ (right) according to NBO analyses with selected bonding parameters.

In comparison, the " π -bonded" isomers $(1H^+)'_{calc}$ and $(1Me^+)'_{calc}$ display only one nonpolarized NBO corresponding to the Si–Si σ -bond, with each Si atom carrying a lone pair of electrons in a NHO with high s-character (see SI, Tables S9 and S11). This leads to a considerably lower Si–Si WBI $((1H^+)'_{calc}: 1.01; (1Me^+)'_{calc}: 0.90)$ than those of $1H^+_{calc}$ and $1Me^+_{calc}$ and to a Si–Si NRT bond order $((1H^+)'_{calc}: 0.96; (1Me^+)'_{calc}: 0.90)$, which lies at half the value of that in the " σ -bonded" isomers $1H^+_{calc}$ and $1Me^+_{calc}$. All these results suggest the presence of a Si–Si single bond in $(1H^+)'_{calc}$ and $(1Me^+)'_{calc}$.

The largest difference between $(1H^{\scriptscriptstyle +})'_{\, calc}$ and $(1Me^{\scriptscriptstyle +})'_{\, calc}$ exists with respect to the Si-R-Si interaction. In $(1H^+)'_{calct}$ a highly localized NBO is found corresponding to the 3c-2e Si-H-Si interaction, which is formed of an almost pure 3p NHO of each Si atom and the hydrogen 1s orbital and is polarized toward the H atom (Figure 5, left). In comparison, only a NBO for the $\sigma(\text{Si1-C}_{\text{Me}})$ bond, but no NBO for the Si2- C_{Me} bond was found in (1Me⁺)'_{calc} (see SI, Table S11). Instead, the Si2 atom bears a lone vacancy of pure p-character (with an occupancy of 0.26 electrons), which attains electron density from the $\sigma(\text{Si1}-\text{C}_{\text{Me}})$ and one $\sigma(\text{C}-\text{H})$ orbital of the methyl group according to second order perturbation theory. The corresponding second order perturbation energies $E^{(2)}$ amount to 196.6 kJ mol⁻¹ and 156.9 kJ mol⁻¹, respectively. This "agostic-type" interaction locates one of the methyl hydrogen atoms (H1) in the Si2-Si1-C56 plane and leads to an elongation of one CMe-H1 (C56-H1) bond reducing the electron deficiency at the Si2 atom (Figure 5, right).

2.4. Addition of Alkali Metal Borates to (ldipp)Si= Si(ldipp). During the syntheses of $\mathbf{1R}[B(Ar^F)_4]$ (R = Me, Et) from 1, Na[B(Ar^F)]₄ and RI, a color change of the dark red solution of 1 in C₆H₃F to brown was observed upon treatment with Na[B(Ar^F)₄]. This stimulated us to study the interaction of 1 with alkali metal cations. In fact, compound 1 readily reacted with the alkali metal borates [Li(Et₂O)_{2.5}][B(C₆F₅)₄]⁴⁶ and Na[B(Ar^F)₄]^{24b,47} to afford after crystallization from fluorobenzene/*n*-hexane mixtures the alkali metal disilicon(0) borates [Si₂(M)(Idipp)₂][BAr₄] (1M[BAr₄]; M = Li, Ar = C₆F₅; M = Na, Ar = Ar^F) as brown solids in 43% (M = Li) and 70% yield (M = Na), respectively (Scheme 4) (see SI, chapters 2.5 and 2.6). The compounds rapidly decompose upon contact with air, but are thermally quite robust solids (decomposition at 202 °C (1Li[B(C₆F₅)₄) and 211–212 °C (1Na[B(Ar^F)₄])).

Dissolution of $1M[BAr_4]$ (M = Li, Na) in coordinating solvents, such as diethyl ether or THF, led to an instant decomplexation of the alkali metal ions to give back 1 and the alkali metal borates. However, solutions of $1M[BAr_4]$ in noncoordinating polar solvents (fluorobenzene, chlorobenzene) were found to be stable for several days at room temperature. Scheme 4. Synthesis of the Alkali Metal Disilicon(0) Borates $1M[BAr_4]$ (M = Li, Ar = C₆F₅, n = 2.5; M = Na, Ar = Ar^F, n = 0)^a

"Formal charges and the $\eta^6\text{-}coordination$ of the two N-bonded dipp substituents are not depicted.

The solid state structures of $1Li[B(C_6F_5)_4] \cdot (n-C_6H_{14})$ (Figure 6) and $1Na[B(Ar^F)_4]$ (see SI, Figure S35) were

Figure 6. DIAMOND plot of the molecular structure of 1Li^+ in the crystal lattice of $1\text{Li}[B(C_6F_5)_4] \cdot (n \cdot C_6H_{14})$ at 123(2) K. Thermal ellipsoids are set at 30% probability. Hydrogen atoms were omitted for clarity. Selected bond lengths [Å], bond angles [deg] and torsion angles [deg]: C1–Si1 1.941(3), C28–Si2 1.938(3), Li–Si1 2.822(6), Li–Si2 2.925(7), Si1–Si2 2.234(1); Si1–Li–Si2 45.7(1), C1–Si1–Si2 94.9(1), C1–Si1–Li 95.9(2), Si2–Si1–Li 69.6(1), C28–Si2–Si1 98.7(1), C28–Si2–Li 93.7(2), Si1–Si2–Li 64.7(1); C1–Si1–Si2–C28 175.5(1).

determined by single-crystal X-ray diffraction studies. The C_1 -symmetric cations **1Li**⁺ and C_2 -symmetric cations **1Na**⁺ are well separated from the borate counteranions, as apparent from the shortest Si…F distances of 6.155(3) Å and 6.809(6) Å, respectively (cf. $\Sigma r(\text{Si} \dots \text{F})_{vdW} = 3.6 \text{ Å}).^{25}$ The alkali metal cations are encapsulated in the cavity of the (Idipp)Si=Si(Idipp) core of **1Li**⁺ and **1Na**⁺ via η^2 -coordination to the Si=Si π -bond and η^6 -coordination to two peripheral 2,6-

Scheme 5. Isolobal Derivatives of the Cations [(NHC)(R)Si^{II}=Si⁰(NHC)]⁺ (A; A = 1R⁺ for NHC = Idipp and R = H, Me, Et)

diisopropylphenyl (dipp) rings (Figure 6 and Figure S35 (SI)). The Si–Li bond distances in 1Li⁺ (Si1–Li: 2.822(6) Å, Si2–Li: 2.925(7) Å) are quite long and comparable to that of the contact ion pair $R_2Si=Si(R)Li(dme)_2$ (2.853(3) Å, $R = C_6H_2$ -2,4,6-*i* Pr_3).⁴⁸ They suggest a weak Si…Li interaction, which is corroborated by the only slightly elongated Si=Si bond (2.234(1) Å, 0.2%) compared to 1 (2.229(1) Å).² The Si–Na bond lengths in 1Na⁺ (3.096(3) Å) are similar to the Si–Na bond lengths in the dimer (NaSitBu₃)₂ (3.060(4) and 3.073(4) Å),⁴⁹ and the Si=Si bond (2.248(2) Å) of 1Na⁺ is slightly more elongated (0.9%) than in 1Li⁺.

Encapsulation of the Li⁺ and Na⁺ ions in the cavity of 1 leads only to minor structural changes of the (Idipp)Si=Si(Idipp) core (Table 2). This suggests a mainly electrostatic bonding of the alkali metal ions to the Si=Si π bond and the π -electron systems of the two dipp substituents, which is typical for alkali metal cation- π interactions.⁵⁰ Notably the M-arene_{centroid} distances (2.292 and 2.451 Å in 1Li⁺, 2.557 Å in 1Na⁺), compare well with those of the alkali metal cation- π complexes $[Li(\eta^6-toluene)][CB_{11}Me_{12}]$ (2.39, 2.45 Å) and $[Na(\eta^6$ benzene)₂][CB₁₁Me₁₂] (2.69 and 2.71 Å).⁵¹ Remarkably, a similar reaction of the diboron(0) compound (Idipp)B= B(Idipp) with alkali metal borates was reported recently to give the cations $[B_2(M)(Idipp)_2]^+$ (M = Li, Na), which however could not be isolated and structurally characterized.⁵²

Multinuclear NMR spectroscopic analyses of 1M[BAr₄] in C₆D₅Cl indicate clearly that the encapsulation of the alkali metal cations is retained in solution. Thus, the ²⁹Si{¹H} NMR spectrum of $1Li[B(C_6F_5)_4]$ displays one broadened signal at 301.1 ppm and that of 1Na[B(Ar^F)₄] one sharp ²⁹Si NMR signal at 288.8 ppm (see SI, Figures S26 and S30). Both ²⁹Si NMR resonances appear at considerably lower field compared to 1 (δ = 224.5 ppm).² Remarkably, the opposite trend was observed for the ²⁹Si NMR resonances of η^2 -disilene complexes of transition metals, which can be explained by the considerable metal-ligand π back-bonding in the latter compounds.⁵³ No coupling between the ²⁹Si (I = 1/2) and the quadrupolar ⁷Li (I= 3/2) nucleus could be resolved in the ²⁹Si{¹H} NMR spectrum of $1\text{Li}[B(C_6F_5)_4]$ at 298 and 243 K, due to signal broadening. However, the width of the 29 Si NMR signal of $\Delta \nu$ \approx 56 Hz (298 K) suggests, that the upper limit of the scalar ²⁹Si-⁷Li coupling would be 14 Hz. This value is considerably smaller than those in lithiosilanes $({}^{1}I({}^{29}Si, {}^{7}Li) = 32.8-65.3$ Hz),⁵⁴ providing additional evidence for the mainly electrostatic interaction of the alkali metal ions with the Si=Si π -bond in 1M[BAr₄]. Notably, the ⁷Li NMR signal of 1Li[B(C₆F₅)₄] (δ = -6.7 ppm) appears in the common range of π -complexated Li⁺ ⁵ but at considerably higher field than that of ions, $[Li(Et_2O)_{2,5}][B(C_6F_5)_4]$ ($\delta = -1.1$ ppm in C_6H_5F). This observation suggests a tight encapsulation of the Li⁺ ion by 1 in solution.

The ¹H and ¹³C NMR spectra of $1M[BAr_4]$ display a single set of signals for the two Idipp substituents indicating that a rapid site exchange of the η^6 -coordinated dipp groups with those which are not bonded to the alkali metal ions occurs on the NMR time scale (see SI, Figures S23–S25 and S27–S29). No splitting of the ¹H NMR signals was observed at -40 °C just above the freezing point of C_6D_5Cl (-45 °C). It is presently unclear whether this site exchange is an intramolecular process involving a successive or concomitant rotation of the NHC groups about the respective Si– $C_{\rm NHC}$ bonds. An intermolecular Li⁺ exchange seems less probable given the broadening of the ²⁹Si NMR resonance induced by the unresolved spin–spin coupling.

Quantum chemical calculations of the cation $1Li^+$ were carried out on the B97-D3/I level of theory to analyze the interaction of Li⁺ with the (Idipp)Si=Si(Idipp) core of $1.^{43}$ The structural parameters of the optimized minimum structure $1Li^+_{calc}$ agree well with the experimental values (see SI, Table S6).

A look at the Kohn–Sham orbitals of 1Li^+_{calc} revealed the same sequence of frontier orbitals as in 1, in which the $n_+(\text{Si}-\text{Si})$ orbital is the HOMO, the Si=Si π -orbital is the HOMO–1 and the $n_-(\text{Si}-\text{Si})$ orbital is the HOMO–2 (see SI, Figure S43).^{8,18} No orbitals pointing to an interaction between Li⁺ and the η^2 -coordinated Si=Si bond or the η^6 -coordinated aryl substituents were found by the calculations due to the mainly electrostatic bonding of Li⁺, which was further confirmed by an NBO analysis of 1Li^+_{calc} (see SI, Table S12). The Li atom displays a lone vacancy with a small occupancy of 0.13. Second order perturbation theory analysis of the Fock matrix in the NBO basis revealed only small interaction energies between the Si-based or aryl-based donor NBOs and the lone vacancy on the Li atom (see SI, Table S13), which is characteristic of electrostatic cation– π interactions.⁵⁶

Consequently, the encapsulation of the Li⁺ cation in the cavity of 1 is accompanied by only a minor charge transfer to the Li⁺ ion, which still carries a high positive charge in 1Li^+_{calc} according to an NPA charge analysis (q(Li) = 0.85e). This charge transfer occurs exclusively from the NHCs, as evidenced by the essentially identical NPA charges of the Si atoms in 1Li^+ (q(Si1) = -0.12e, q(Si2) = -0.11e) and in 1 (q(Si1,Si2) = -0.10e) (see SI, Tables S7 and S12).

2.5. Quantum Chemical Calculations of a Series of Isolobal Compounds with [(Idipp)(R)Si^{II}=Si⁰(Idipp)]⁺. Formal replacement of the [Si(Idipp)] fragments in [(Idipp)-(R)Si^{II}=Si⁰(Idipp)]⁺ (1R⁺, R = H, Me, Et) by the isolobal fragments [SiR]⁻ and [PR]^{19,20} leads to a series of Si and P multiple-bonded compounds B–F, which are depicted in Scheme 5. Class B,¹² C²⁷ and F^{23a} compounds are very rare, whereas disilenide anions (D)^{28,48,57} and phosphasilenes (E)⁵⁸ are familiar classes of compounds, the synthetic potential of which has been exploited. A comparison of A with B–F unraveled many common structural features, which stimulated us to study their electronic structures.

For this purpose quantum chemical calculations of the model systems with NHC^{Me} = $C[N(Me)CH]_2$ and R = Me were carried out on the B97-D3/RI-JCOSX/def2-TZVP level of theory.⁴³ The optimized minimum structures are depicted in Figure 7 and selected bonding parameters are given in Table 3.

Figure 7. Calculated minimum structures of the model compounds A-F (NHC^{Me} = C[N(Me)CH]₂, R = Me) depicted in Scheme 5. Hydrogen atoms were omitted for simplicity reasons.

Table 3. Selected Calculated Bond Lengths, Bond Ar	ngles
and Dihedral Angles of Compounds A-F Depicted in	Figure
7^a	_

	E1-E2 [Å]	E1-C1 [Å]	E2-C2 [Å]	E1-C3 [Å]	C1-E1-E2 [deg]	C2-E2-E1 [deg]
Α	2.213	1.890	1.946	1.900	118.45	89.50
В	2.240	1.882	1.962	1.911	121.59	101.14
С	2.192	1.910	1.931	1.900	129.55	88.91
D	2.210	1.935	1.997	1.927	132.00	99.53
Ε	2.083 ^d	1.885 ^d	1.889 ^d	1.881 ^d	129.14 ^d	102.08 ^d
F	2.010	1.812	1.850	1.807	130.06	104.02
	C1-E1- [deg]	C3 C3	3-E1-E2 [deg]	$\frac{\Sigma(E1)^{b}}{[deg]}$	$\varphi_{ m NHC1}^{c}$ [deg]	$\left[{\mathop{\mathrm{deg}} olimits} ight]^c$
Α	111.66		129.85	359.96	12.79	91.96
В	109.06		124.43	355.08	53.23	-
С	108.23		122.18	359.96	-	96.26
D	104.95		123.05	360.00	-	-
Е	111.76	d	119.76 ^d	360.00	-	-
F	112.80		117.14	360.00	-	-

 ${}^{a}E = Si \text{ or } P. {}^{b}\Sigma(E1)$ is the sum of angles around the E1 atom. ${}^{c}\varphi_{\rm NHC1}$ and $\varphi_{\rm NHC2}$ are the dihedral angles between the least-squares planes of the C1–E1–E2–C2 atoms and the heterocyclic ring atoms of the NHC substituents bonded to E1 and E2, respectively. ${}^{d}E1 = Si$, E2 = P.

The structures of compounds **A**, **C**, **D**, **E** and **F** are quite similar as evidenced by the similar Si–Si, Si– C_{NHC} and Si– C_{methyl} bond lengths, the similar C1–E1–E2, C2–E2–E1, C1–E1– C3 and C3–E1–E2 bond angles (E = Si or P), the planar geometry around the E1 atoms and the orthogonal orientation of the Si2-bonded NHC substituent in compounds **A** and **C** with respect to the C1–Si1–Si2–C2 plane. The structural parameters of compound **B** differ slightly from those of compounds **A** and **C**, which becomes apparent from the slight pyramidalization of the Si1 atom and the synclinal orientation of the Si1-bonded NHC substituent toward the C1–Si1–Si2– C2 plane.

A look at the Kohn–Sham orbitals of compounds A–F reveals the same sequence of frontier orbitals as expected for isolobal compounds (Table 4). Thus, the HOMOs are in all cases the E=E π -orbitals, the HOMOs–1 the lone pair orbitals at the two-coordinated E2 atoms (E2 = Si or P), and the LUMOs of compounds A, B, D, E and F the E=E π *-orbitals. In the NHC-substituted compounds A and B a significant

stabilization of the Si=Si π^* -orbital occurs via a bonding interaction with the C_{NHC}- and N_{NHC}-centered π^* -orbital of the NHC^{Me}-substituent. In compound C the Si=Si π^* -orbital is the LUMO+1, whereas the LUMO is mainly the C_{NHC}- and N_{NHC}-centered π^* orbital of the Si2-bonded NHC-substituent. It is noteworthy that the Kohn–Sham orbitals of $\mathbf{1H}^+_{calc'}$ \mathbf{IMe}^+_{calc} (see SI, Figures S39 and S41), [(Idipp)(I)Si= Si(Idipp)]⁺,⁴ Tbb(Br)Si=Si(SIdipp)¹² and the model compound (IMe₄)(R)Si=SiR (R = SiMe₃)²⁷ compare well those of the respective model systems depicted in Table 4.

Whereas compounds A-F reveal the same number, symmetry properties and the same occupation of the frontier orbitals with electrons, the absolute energies of the frontier orbitals of A-F differ significantly (Table 4). This is not surprising given the different charges of the compounds and the considerable higher electronegativity of the [PR] than that of the [Si(NHC)] or [SiR]⁻ fragment, and implies a quite different reactivity of A-F, which remains to be exploited for the silicon compounds A-C. The interrelationship of A-Fprovides a different view of the bonding between NHCs and main-group elements from that developed by G. Frenking,¹⁴ and enables one to conceive many presently unknown Si compounds that are related to known phosphorus congeners.

3. SUMMARY

The mixed-valent disilicon(I) borates $\mathbf{1R}[B(Ar^{F})_{4}]$ (R = H, Me, Et) were obtained upon electrophilic addition of R⁺ to 1 and were comprehensively analyzed by a combination of structural, spectroscopic and quantum chemical methods. The unprecedented 1,2-hydrogen migration observed along the Si=Si bond of $\mathbf{1H}[B(Ar^F)]_4$ is reminiscent of the degenerate isomerization of carbenium ions, and can be considered as a molecular model for the H-migration in hydrogenated amorphous silicon that is of relevance in photovoltaics. The cations $1R^+$ have considerable synthetic potential in silicon chemistry given their many potential reactivity sites, and can be strikingly viewed as NHC-trapped examples of the cations $[Si_2R]^+$ providing another example for the exceptional ability of NHCs to stabilize low-valent silicon centers in unusual bonding environments. The interrelation of the electronic structure of the cations 1R⁺ to those of a series of Si and P multiple-bonded compounds that are obtained upon replacement of the [Si(NHC)] by the isolobal [PR] and [SiR]⁻ fragments provides a different view on the electronic structure of NHC-stabilized

	HOMO-1	НОМО	LUMO
$[(NHC^{Me})(R)Si=Si(NHC^{Me})]^{*}$ (A)	¢¢		
	-7.89 eV	-7.23 eV	-5.26 eV
(NHC ^{Me})(R)Si=SiR (B)	2 Star		N
	−3.95 eV	-3.50 eV	−1.73 eV
R₂Si=Si(NHC ^{Me}) (C)			
	-4.34 eV	-3.42 eV	−1.06 eV
$[R_2Si=SiR]^{-}(\mathbf{D})$			
	0.30 eV	0.94 eV	3.54 eV
R ₂ Si=PR (E)			
	-5.76 eV	-4.87 eV	-1.70 eV
$\left[R_{2}P=\mathsf{PR}\right]^{*}(\textbf{F})$		Ļ	

Table 4. Selected Kohn-Sham Orbitals and Their Energy Eigenvalues of Compounds A-F depicted in Figure 7^a

^{*a*}NHC^{Me} = $C[N(Me)CH]_2$, R = Me. Isosurface value: 0.05 e Bohr⁻³.

main-group element compounds. The Si⁰ compound **1** bears an optimal cavity for the complexation of alkali metal cations as demonstrated by the isolation and full characterization of $\mathbf{1M}[BAr_4]$ (M = Li, Na), which may become valuable reagents for the functionalization of **1** in reactions with main-group element or transition-metal halides.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b01018.

Crystallographic data for $1H[B(Ar^F)_4]$, $1Me[B(Ar^F)_4]$, $1Et[B(Ar^F)_4]$, $1Li[B(C_6F_5)_4] \cdot (n - C_6H_{14})$ and $1Na[B \cdot (Ar^F)_4$ (also deposited with the Cambridge Structural Database under the deposition numbers CCDC 1448827 - 1448831). (CIF)

Syntheses, analytical data and illustrations of the ¹H, ¹³C{¹H} and ²⁹Si{¹H} NMR spectra of **1H**[B(Ar^F)₄], **1Me**[B(Ar^F)₄], **1Et**[B(Ar^F)₄], **1Li**[B(C₆F₅)₄], and **1Na**[B(Ar^F)₄]. Analysis of the dynamic process of **1H**[B(Ar^F)₄] in solution as well as details of the quantum chemical calculations. (PDF)

AUTHOR INFORMATION

Corresponding Author

*filippou@uni-bonn.de

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Deutsche Forschungsgemeinschaft (SFB813, "Chemistry at Spin Centers") for financial support of this study. We also thank Dr. Ujjal Das and Dr. Senada Nozinovic for helpful discussions.

REFERENCES

 (1) For recent reviews, see: (a) Wang, Y.; Robinson, G. H. Chem. Commun. 2009, 5201. (b) Wang, Y.; Robinson, G. H. Dalton Trans.
 2012, 41, 337. (c) Roesky, H. W. J. Organomet. Chem. 2013, 730, 57.
 (d) Ghadwal, R. S.; Azhakar, R.; Roesky, H. W. Acc. Chem. Res. 2013, 46, 444. (e) Wilson, D. J. D.; Dutton, J. L. Chem. - Eur. J. 2013, 19, 13626. (f) Martin, C. D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci.
 2013, 4, 3020. (g) Wang, Y.; Robinson, G. H. Inorg. Chem. 2014, 53, 11815. (h) Rivard, E. Struct. Bonding (Berlin, Ger.) 2013, 156, 203.
 (2) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069.

Journal of the American Chemical Society

(3) Xiong, Y.; Yao, S.; Inoue, S.; Epping, J. D.; Driess, M. Angew. Chem., Int. Ed. 2013, 52, 7147; Angew. Chem. 2013, 125, 7287.

(4) Arz, M. I.; Geiß, D.; Straßmann, M.; Schnakenburg, G.; Filippou, A. C. Chem. Sci. 2015, 6, 6515.

(5) (a) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683; Angew. Chem. 2009, 121, 5793.
(b) Filippou, A. C.; Chernov, O.; Schnakenburg, G. Angew. Chem., Int. Ed. 2009, 48, 5687; Angew. Chem. 2009, 121, 5797.
(c) Filippou, A. C.; Chernov, O.; Schnakenburg, G. Chem. - Eur. J. 2011, 17, 13574.
(d) Filippou, A. C.; Lebedev, Y. N.; Chernov, O.; Straßmann, M.; Schnakenburg, G. Angew. Chem., Int. Ed. 2013, 52, 6974; Angew. Chem. 2013, 125, 7112.

(6) (a) Filippou, A. C.; Chernov, O.; Blom, B.; Stumpf, K. W.; Schnakenburg, G. Chem. - Eur. J. 2010, 16, 2866. (b) Cui, H.; Cui, C. Dalton Trans. 2011, 40, 11937. (c) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. - Eur. J. 2012, 18, 13810. (d) Inoue, S.; Eisenhut, C. J. Am. Chem. Soc. 2013, 135, 18315. (e) Agou, T.; Hayakawa, N.; Sasamori, T.; Matsuo, T.; Hashizume, D.; Tokitoh, N. Chem. - Eur. J. 2014, 20, 9246.

(7) Cowley, M. J.; Huch, V.; Rzepa, H. S.; Scheschkewitz, D. Nat. Chem. 2013, 5, 876.

(8) Arz, M. I.; Straßmann, M.; Meyer, A.; Schnakenburg, G.; Schiemann, O.; Filippou, A. C. *Chem. - Eur. J.* **2015**, *21*, 12509.

(9) Ahmad, S. U.; Szilvási, T.; Inoue, S. Chem. Commun. 2014, 50, 12619.

(10) (a) Jana, A.; Huch, V.; Scheschkewitz, D. Angew. Chem., Int. Ed. 2013, 52, 12179; Angew. Chem. 2013, 125, 12401. (b) Jana, A.; Majumdar, M.; Huch, V.; Zimmer, M.; Scheschkewitz, D. Dalton Trans. 2014, 43, 5175.

(11) Geiß, D.; Arz, M. I.; Straßmann, M.; Schnakenburg, G.; Filippou, A. C. Angew. Chem., Int. Ed. 2015, 54, 2739; Angew. Chem. 2015, 127, 2777.

(12) Ghana, P.; Arz, M. I.; Das, U.; Schnakenburg, G.; Filippou, A. C. Angew. Chem., Int. Ed. 2015, 54, 9980; Angew. Chem. 2015, 127, 10118.

(13) (a) Himmel, D.; Krossing, I.; Schnepf, A. Angew. Chem., Int. Ed.
2014, 53, 370; Angew. Chem. 2014, 126, 378. (b) Frenking, G. Angew.
Chem., Int. Ed. 2014, 53, 6040; Angew. Chem. 2014, 126, 6152.
(c) Himmel, D.; Krossing, I.; Schnepf, A. Angew. Chem., Int. Ed. 2014, 53, 6047; Angew. Chem. 2014, 126, 6159. (d) Köppe, R.; Schnöckel, H.
Chem. Sci. 2015, 6, 1199. (e) Perras, F. A.; Ewing, C. A.; Dellermann, T.; Böhnke, J.; Ullrich, S.; Schäfer, T.; Braunschweig, H.; Bryce, D. L.
Chem. Sci. 2015, 6, 3378.

(14) (a) Frenking, G.; Tonner, R. In *The Chemical Bond—Chemical Bonding Across the Periodic Table*; Frenking, G., Shaik, S., Eds.; Wiley-VCH: Weinheim, 2014; Chapter 4, pp 71–112. (b) Holzmann, N.; Andrada, D. M.; Frenking, G. J. Organomet. Chem. **2015**, 792, 139.

(15) (a) Dyker, C. A.; Bertrand, G. Science 2008, 321, 1050.
(b) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. Angew. Chem., Int. Ed. 2009, 48, 9701; Angew. Chem. 2009, 121, 9881.
(c) Jones, C.; Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. Chem. Commun. 2012, 48, 9855. (d) Frenking, G.; Holzmann, N. Science 2012, 336, 1394. (e) Holzmann, N.; Dange, D.; Jones, C.; Frenking, G. Angew. Chem., Int. Ed. 2013, 52, 3004; Angew. Chem. 2013, 125, 3078.

(16) (a) Bruna, P. J.; Peyerimhoff, S. D.; Buenker, R. J. J. Chem. Phys. 1980, 72, 5437. (b) Peyerimhoff, S. D.; Buenker, R. J. Chem. Phys. 1982, 72, 111.

(17) The B3LYP/6-311+G**/6-31G* computed ZPVE corrected (ZPVE = zero point vibrational energy) dissociation energies for the stepwise dissociation of the carbene substituents from Si₂(Idipp)₂ at 0 K amount to 126.5 kJ mol⁻¹ (Si₂(Idipp)₂ \rightarrow Si₂(Idipp) (S = 0) + Idipp (S = 0)) and 185.0 kJ mol⁻¹ (Si₂(Idipp) \rightarrow Si₂ (S = 1, X³ Σ_g^-) + Idipp (S = 0)) (S is the total spin angular momentum of the electronically and geometrically relaxed fragments), see ref 8.

(18) For a quantum chemical description of through-bond and through-space interactions leading to n_+ and n_- lone pair orbitals see: (a) Hoffmann, R. Acc. Chem. Res. **1971**, 4, 1. (b) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry, 2nd ed.; Wiley-Interscience: Hoboken, NJ, 2013; Chapter 11, pp 241–271. (19) Nobel lecture on isolobal analogy: Hoffmann, R. Angew. Chem., Int. Ed. Engl. **1982**, 21, 711; Angew. Chem. **1982**, 94, 725.

(20) In an approach for the formal classification of covalent compounds of transition metals, a neutral 2e-donor as Idipp has been also considered as equivalent to R^- (R = alkyl, aryl): Green, M. L. H. J. Organomet. Chem. **1995**, 500, 127.

(21) (a) Cowley, A. H.; Norman, N. C.; Pakulski, M. J. Chem. Soc., Chem. Commun. 1984, 1054. (b) Cowley, A. H.; Kilduff, J. E.; Norman, N. C.; Pakulski, M. J. Chem. Soc., Dalton Trans. 1986, 1801.
(c) Partyka, D. V.; Washington, M. P.; Gray, T. G.; Updegraff, J. B., III; Turner, J. F., II; Protasiewicz, J. D. J. Am. Chem. Soc. 2009, 131, 10041.

(22) (a) Chen, M.; Wang, Y.; Xie, Y.; Wei, P.; Gilliard, R. J., Jr.; Schwartz, N. A.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *Chem. - Eur. J.* **2014**, 20, 9208. (b) Arz, M. I. Molecular Si(0) and Si(I) Compounds: Synthesis, Structure and Reactivity. Ph.D. Thesis, University of Bonn, 2016. (c) Arz, M. I.; Schnakenburg, G.; Filippou, A. C. n and π Complexes of NHC-stabilized Disilicon(0). *Proceedings of the 14th International Symposium on Inorganic Ring Systems*, Regensburg, July 26–31, 2015. (d) Arz, M. I.; Straßmann, M.; Schnakenburg, G.; Filippou, A. C. Chemistry of NHC-stabilized Disilicon(0). *Proceedings of the 46th Silicon Symposium*, Davis, CA, June 21–24, 2015.

(23) (a) Loss, S.; Widauer, C.; Grützmacher, H. Angew. Chem., Int. Ed. 1999, 38, 3329; Angew. Chem. 1999, 111, 3546. (b) Cowley, A. H.; Kilduff, J. E.; Norman, N. C.; Pakulski, M. J. Am. Chem. Soc. 1983, 105, 4845.

(24) (a) Brookhart, M.; Grant, B.; Volpe, A. F., Jr. Organometallics 1992, 11, 3920. (b) Taube, R.; Wache, S. J. Organomet. Chem. 1992, 428, 431.

(25) Batsanov, S. S. Inorg. Mater. 2001, 37, 871.

(26) $\varphi_{\rm NHC1}$ and $\varphi_{\rm NHC2}$ denotes the dihedral angle between the $C_{\rm NHC}$ Si-Si- $C_{\rm NHC}$ least-squares plane and the least-squares plane of the Nheterocyclic ring bonded to the Si1 and Si2 atom, respectively.

(27) Yamaguchi, T.; Sekiguchi, A.; Driess, M. J. Am. Chem. Soc. 2010, 132, 14061.

(28) Kinjo, R.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2007, 129, 26.

(29) Chernov, O. Novel Molecular Si(II) Precursors for Synthesis of the First Compounds with Metal-Silicon Triple Bonds. Ph.D. Thesis, University of Bonn, 2012.

(30) Agou, T.; Sugiyama, Y.; Sasamori, T.; Sakai, H.; Furukawa, Y.; Takagi, N.; Guo, J.-D.; Nagase, S.; Hashizume, D.; Tokitoh, N. *J. Am. Chem. Soc.* **2012**, *134*, 4120.

(31) (a) Simons, R. S.; Haubrich, S. T.; Mork, B. V.; Niemeyer, M.; Power, P. P. *Main Group Chem.* **1998**, *2*, 275. (b) Weidemann, N.; Schnakenburg, G.; Filippou, A. C. Z. *Anorg. Allg. Chem.* **2009**, *635*, 253.

(32) Binsch, G.; Eliel, E. L.; Kessler, H. Angew. Chem., Int. Ed. Engl. 1971, 10, 570; Angew. Chem. 1971, 83, 618.

(33) Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. *Tetrahedron* **1999**, *55*, 14523.

(34) Iggo, J. A. NMR Spectroscopy in Inorganic Chemistry; Oxford University Press: Oxford, England, 1999.

(35) Dolgonos, G. Chem. Phys. Lett. 2008, 466, 11.

(36) Dürr, M.; Höfer, U. Prog. Surf. Sci. 2013, 88, 61.

(37) (a) Staebler, D. L.; Wronski, C. R. Appl. Phys. Lett. 1977, 31, 292. (b) Branz, H. M. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 5498.

(38) (a) Haselbach, E.; Heilbronner, E. Tetrahedron Lett. 1967, 8, 4531. (b) Hoefnagel, M. A.; van Veen, A.; Wepster, B. M. Rec. Trav. Chim. Pays-Bas 1969, 88, 562. (c) Haselbach, E. Helv. Chim. Acta 1970, 53, 1526. (d) Eian, G. L.; Kingsbury, C. A. Bull. Chem. Soc. Jpn. 1970, 43, 739. (e) Cox, R. A.; Buncel, E. In The Chemistry of the Hydrazo, Azo and Azoxy Groups; Patai's Chemistry of Functional Groups; Patai, S., Ed.; Wiley-Interscience: New York, 1975; Vol. 2, Chapter 18, pp 775–859. (f) Kuroda, Y.; Lee, H.; Kuwae, A. J. Phys. Chem. 1980, 84, 3417.

(39) For selected reviews, see: (a) Leone, R. E.; Schleyer, P. v. R. Angew. Chem., Int. Ed. Engl. 1970, 9, 860; Angew. Chem. 1970, 82, 889.
(b) Olah, G. A. J. Am. Chem. Soc. 1972, 94, 808. (c) Olah, G. A. Angew. Chem., Int. Ed. Engl. 1973, 12, 173; Angew. Chem. 1973, 85, 183.
(d) McMurry, J. E.; Lectka, T. Acc. Chem. Res. 1992, 25, 47.

(40) Taking the equation $\Delta G^{\neq} = 0.01914 \cdot T \cdot [9.972 + \lg(T/\Delta\nu)]$, the smallest separation ($\Delta\nu$) of two signals of the heterotopic Idipp substituents in the ¹H NMR spectrum at 298 K ($\Delta\nu = 7.6$ Hz) and the boiling point of THF- d_8 (T = 338 K), a low limit of the Gibbs energy of activation can be estimated to be $\Delta G^{\neq} = 75$ kJ mol⁻¹ (Sandström, D. Dynamic NMR Spectroscopy; Academic Press: London, 1992).

(41) (a) Hunter, B. K.; Reeves, L. W. Can. J. Chem. 1968, 46, 1399.
(b) Schraml, J.; Chvalovský, V.; Mägi, M.; Lippmaa, E. Collect. Czech. Chem. Commun. 1979, 44, 854.

(42) Dorman, D. E.; Jautelat, M.; Roberts, J. D. J. Org. Chem. 1971, 36, 2757.

(43) ORCA 3.0.0 program package: (a) Neese, F. WIRES Comput. Mol. Sci. 2012, 2, 73. B97-D3 functional: (b) Grimme, S. J. Comput. Chem. 2006, 27, 1787. (c) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. (d) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. COSMO model: (e) Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 799. RI-JCOSX approximations: (f) Neese, F. J. Comput. Chem. 2003, 24, 1740. (g) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys. 2009, 356, 98. def2-TZVP and def2-SVP basis sets: (h) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571. (i) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. NBO 6.0 program: (j) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013.

(44) The term " σ -bonded" isomer was used to indicate that this isomer features a Si–R σ -bond (R = H, Me, Et) resulting from the interaction of the n₊ lone pair orbital of 1 with the LUMO of the electrophile R⁺ (R = H, Me, Et). In comparison, the " π -bonded" isomer features a 3c-2e bond resulting from the interaction of the Si= Si π bond of 1 with the LUMO of the electrophile.

(45) Holleman, A. F.; Wiberg, E. Inorganic Chemistry; Academic Press: San Diego, 2001; Lehrbuch der Anorganischen Chemie, 101. verbesserte und stark erweiterte Auflage, deGruyter: Berlin, 2001.

(46) (a) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245.
(b) Lehmann, M.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2009, 48, 7444; Angew. Chem. 2009, 121, 7580.

(47) (a) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2600. (b) Bahr, S. R.; Boudjouk, P. *J. Org. Chem.* **1992**, *57*, 5545. (c) Reger, D. L.; Little, C. A.; Lamba, J. J. S.; Brown, K. J.; Krumper, J. R.; Bergman, R. G.; Irwin, M.; Fackler, J. P., Jr. *Inorg. Synth.* **2004**, *34*, 5. (d) Yakelis, N. A.; Bergman, R. G. *Organometallics* **2005**, *24*, 3579.

(48) Scheschkewitz, D. Angew. Chem., Int. Ed. 2004, 43, 2965; Angew. Chem. 2004, 116, 3025.

(49) Wiberg, N.; Amelunxen, K.; Lerner, H.-W.; Schuster, H.; Nöth, H.; Krossing, I.; Schmidt-Amelunxen, M.; Seifert, T. J. Organomet. Chem. 1997, 542, 1.

(50) For a review on cation $-\pi$ interactions and their importance in biological systems and material science, see: Ma, J. C.; Dougherty, D. A. *Chem. Rev.* **1997**, *97*, 1303.

(51) King, B. T.; Noll, B. C.; Michl, J. Collect. Czech. Chem. Commun. 1999, 64, 1001.

(52) Bertermann, R.; Braunschweig, H.; Constantinidis, P.; Dellermann, T.; Dewhurst, R. D.; Ewing, W. C.; Fischer, I.; Kramer, T.; Mies, J.; Phukan, A. K.; Vargas, A. Angew. Chem., Int. Ed. 2015, 54, 13090; Angew. Chem. 2015, 127, 13282.

(53) (a) Kira, M.; Sekiguchi, Y.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 2004, 126, 12778. (b) Fischer, R.; Zirngast, M.; Flock, M.; Baumgartner, J.; Marschner, C. J. Am. Chem. Soc. 2005, 127, 70. (c) Iwamoto, T.; Sekiguchi, Y.; Yoshida, N.; Kabuto, C.; Kira, M. Dalton Trans. 2006, 177. (d) Hartmann, M.; Haji-Abdi, A.; Abersfelder, K.; Haycock, P. R.; White, A. J. P.; Scheschkewitz, D. Dalton Trans. 2010, 39, 9288. (e) Abe, T.; Iwamoto, T.; Kira, M. J. Am. Chem. Soc. 2010, 132, 5008.

(54) Selected references: (a) Edlund, U.; Lejon, T.; Venkatachalam, T. K.; Buncel, E. J. Am. Chem. Soc. 1985, 107, 6408. (b) Becker, G.; Hartmann, H.-M.; Hengge, E.; Schrank, F. Z. Anorg. Allg. Chem. 1989, 572, 63. (c) Belzner, J.; Dehnert, U.; Stalke, D. Angew. Chem., Int. Ed. Engl. 1995, 33, 2450; Angew. Chem. 1994, 106, 2580. (d) Koizumi, T.; Morihashi, K.; Kikuchi, O. Organometallics 1995, 14, 4018. (e) Lee, V. Y.; Sekiguchi, A. Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb: From Phatom Species to Stable Compounds; John Wiley & Sons: Chichster, West Sussex, U.K., 2010; Chapter 3, pp 89-138. (f) Däschlein, C.; Strohmann, C. Eur. J. Inorg. Chem. 2009, 2009, 43. (55) The ⁷Li NMR resonances of π -complexated Li atoms exhibit diagnostic upfield shifts, which result from the interaction with the aromatic ring current, see: (a) Elschenbroich, C.; Salzer, A. Organometallics. A Concise Introduction, 2nd ed.; VCH: Weinheim, Germany, 1992. (b) Johnels, D.; Günther, H. In The Chemistry of Organolithium Compounds, Part 1; Rappoport, Z., Marek, I., Eds.; John Wiley & Sons Ltd.: West Sussex, U.K., 2004; Chapter 4, pp 137-204. (56) Mohajeri, A.; Karimi, E. J. Mol. Struct.: THEOCHEM 2006, 774, 71.

(57) (a) Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Organometallics 2004, 23, 3088. (b) Inoue, S.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2005, 34, 1564. (c) Iwamoto, T.; Kobayashi, M.; Uchiyama, K.; Sasaki, S.; Nagendran, S.; Isobe, H.; Kira, M. J. Am. Chem. Soc. 2009, 131, 3156. (d) Cowley, M. J.; Abersfelder, K.; White, A. J. P.; Majumdar, M.; Scheschkewitz, D. Chem. Commun. 2012, 48, 6595. Review articles: (e) Scheschkewitz, D. Chem. - Eur. J. 2009, 15, 2476. (f) Scheschkewitz, D. Chem. Lett. 2011, 40, 2.

(58) Selected references: (a) Smit, C. N.; Lock, F. M.; Bickelhaupt, F. Tetrahedron Lett. 1984, 25, 3011. (b) Smit, C. N.; Bickelhaupt, F. Organometallics 1987, 6, 1156. (c) Bender, H. R. G.; Niecke, E.; Nieger, M. J. Am. Chem. Soc. 1993, 115, 3314. (d) Driess, M. Coord. Chem. Rev. 1995, 145, 1. (e) Driess, M.; Block, S.; Brym, M.; Gamer, M. T. Angew. Chem., Int. Ed. 2006, 45, 2293; Angew. Chem. 2006, 118, 2351. (f) Yao, S.; Block, M.; Brym, M.; Driess, M. Chem. Commun. 2007, 3844. (g) Lee, V. Y.; Kawai, M.; Sekiguchi, A.; Ranaivonjatovo, H.; Escudié, J. Organometallics 2009, 28, 4262. (h) Li, B.; Matsuo, T.; Hashizume, D.; Fueno, H.; Tanaka, K.; Tamao, K. J. Am. Chem. Soc. 2009, 131, 13222. (i) Hansen, K.; Szilvási, T.; Blom, B.; Inoue, S.; Epping, J.; Driess, M. J. Am. Chem. Soc. 2013, 135, 11795. (j) Willmes, P.; Cowley, M. J.; Hartmann, M.; Zimmer, M.; Huch, V.; Scheschkewitz, D. Angew. Chem., Int. Ed. 2014, 53, 2216; Angew. Chem. 2014, 126, 2248. (k) Breit, N. C.; Szilvási, T.; Inoue, S. Chem. -Eur. J. 2014, 20, 9312.